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Introduction

Modelling Protostellar Disks

Angular Momentum Transport

Accretion by the Magnetorotational Instability:

Ideal Case
Resistive Case and Ionization Structure
Other non-ideal e↵ects
Non-linearities

Accretion by Hydrodynamic Instabilities
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Protostellar Disks

Masses around 0.01� 0.1M� and sizes around 10� 100AU

Thin Disks (Minimum Mass Solar Nebula):

⌃(r) ⇡ 1700
�

r
1 AU

��3/2
gcm�2

h
r = cs

⌦r ⇡ 0.03
�

r
1 AU

�1/4

Cool and Dusty: T (r) ⇡ 280
�

r
1 AU

��1/2
K

Magnetic fields between 10�2 � 1G
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Mass Accretion

Figure: (Kitamura, 2002)

Disks last for ⇠ 1� 10Myr

Must accrete or disperse disk
mass in this time

Accretion rates
⇠ 10�9 � 10�7

M�yr
�1

Disk evolves, accretes mass
onto protostar by

Loss of mass and angular
momentum
(photoevaporation, disk
braking, disk winds)

Angular Momentum
Transport
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Angular Momentum Transport

Local turbulence creates viscoscity ⌫ = ↵

c2s
⌦ related to the local

stress
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This viscoscity drives disk evolution

@⌃

@t

=
3

r

@

@r

p
r

@

@r

�
⌫⌃

p
r

��
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Accretion and di↵usion outwards if @(⌫⌃)
@⌃ < 0

Most internal methods of accretion require sustained turbulence
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MHD Turbulence

Can create turbulence by:

Self-gravity (Wendy)
Hydrodynamic Instabilities
Magnetorotational Instability (MRI)

J x B

J x B
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In Ideal MHD
@B
@t = r⇥ [v ⇥B]

Di↵erential rotation creates
tension along field lines

Excites turbulence, drives
some mass inwards, angular
momentum outwards

Excited if d
dr

�
⌦2

�
< 0
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Complications

In reality, there are non-ideal e↵ects

@B
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= r⇥

v ⇥B� ⌘r⇥B� J⇥B

ene
+

(J⇥B)⇥B

c�⇢i⇢

�
.

Magnetic field drifts due to di↵usion terms

Ohmic Di↵usion: ⌘ = c2

4⇡�c

Ambipolar Di↵usion: (J⇥B)⇥B

c�⇢i⇢

Hall Di↵usion: J⇥B

ene

Stronger coupling between magnetic field and fluid required for
MRI

With Di↵usion, what regions of the disk accrete?

When are non-ideal e↵ects important and what e↵ect do they
have?
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Ohmic Di↵usion

Magnetic Di↵usion due to finite resistivity ⌘ = c2me�e⇢
4⇡e2ne

Important for low ionization fraction since resistivity increases
with neutral fraction

Suppresses MRI when resistive damping ⌧⌘ ⇠ �2

⌘ is shorter than

growth rate ⌧ ⇠ �
vA

Equivalent to:
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hvA
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Disk Ionization

Thermal ionization, at typical densities nH ⇠ 1013gcm�3,
reaches x ⇠ 10�13 for T & 103K

Protoplanetary disks are much colder than most astrophysical
disks, does not hold beyond r ⇠ 0.1AU

Stellar X-rays (1 AU, 5 keV)

Cosmic rays (unshielded)

Radioactive decay of 26Al

Likely surface
density at 1 AU

Figure: (Armitage, 2010)

Non-thermal sources of
ionization dominate

Radioactive Decay

Cosmic Rays

Protostellar X-rays
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Dead Zones

Leads to tiered structure of protostellar disks (Gammie, 1996)

Thermally ionized and MRI turbulent interior
Non-thermally ionized and MRI turbulent exterior
Intermediate region with thin active layer and mid-plane dead
zone

dead zone

collisional ionization at 
T > 103 K (r < 1 AU),
MRI turbulent

resistive quenching
of MRI, suppressed
angular momentum
transport MRI-active 

surface layer

non-thermal ionization
of full disk column 

cosmic
rays?

ambipolar diffusion
dominates

X-rays
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Layered Accretion

Accretion proceeds through the active layer onto the dead zone

Uneven accretion leads to gravitational instability and heating to
above ⇠ 103K

Mass accreted onto dead zone rapidly accreted onto protostar
(Variable/Bursty Accretion)

Accretes su�cient mass onto the dead zone (Gammie, 1996)
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But:

Results ignore Hall and Ambipolar Di↵usion
Very sensitive to the exact opacity/recombination rate
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Uncertainties

x determined by balance between ionization and recombination

Ionization (by X-rays) slightly uncertain

Gas-phase recombination well known (though sensitive to metal
abundance)

Recombination onto grains dependent on both the fraction of
dust and the size of dust grains

ṅI,dust
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⇠ 20
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Even if initial dust distribution is known, the rate of
sedimentation is unknown
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Uncertainties: Dust Fraction

Gammie, 1996 results assume
⌃a ⇡ 100gcm�2, which is only
true for small dust fractions Figure: (Sano, Miyama, 2000)
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Uncertainties: Dust Size

Significant active layer only
for large dust sizes and small
dust fractions

This is true if disk has
evolved significantly

Figure: (Sano, Miyama, 2000)
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Uncertainties: Disk Density

Changes in disk surface density have less impact, but still
uncertain

Figure: (Sano, Miyama, 2000)
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Non-Ideal E↵ects: Ambipolar Di↵usion

Other e↵ects don’t destroy flux but let it drift wrt neutral fluid
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Ambipolar di↵usion (low
density, high x) dominates
when the field is frozen to ions,
with a drift due to neutral drag
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J⇥B
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Non-Ideal E↵ects: Hall Di↵usion

Hall di↵usion dominates when the field frozen to electrons alone
and induces a drift due to the di↵erential ion-electron motion

vH = � J

ene

The Hall e↵ect depends on the field direction and can either
reinforce or entirely suppress the MRI
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Non-Ideal E↵ects in Protoplanetary Discs

Figure: (Sano, Stone, 2002)

Compare di↵usion terms:
O
I ⌘ 1

ReM
A
I ⌘ ⌦

�⇢i
H
I ⌘ X

2

Assume equilibrium:

�c = e2ne
mennh�vie

⌘ = c2

4⇡�c

X = ⌘⌦
2v2

A

Typical protoplanetary disks are Hall/Ohm dominated in inner
regions and Ambipolar-dominated beyond r ⇠ 20AU

Hall di↵usion may be very important for mass accretion

18 / 29

Protostellar Disks: Accretion Processes



Non-Ideal E↵ects: Linear Regime
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Maximum growth rate (Black), wavenumber (Blue) and largest stable wavenumber (Right).

(Wardle, Salmeron 2012)

For B = sBẑ (s = ±1) under perturbations exp(⌫t� ikz)

Weakly coupled electron-ion-neutral plasma:

⌘A = B2

4⇡ �i ⇢⇢i

⌘H = cB
4⇡ e ne

Pure ohmic and ambipolar di↵usion tend to decrease the growth
rate and increase the maximum wavelength of perturbations

Hall Di↵usion increases the maximum growth rate
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Non-Ideal E↵ects: Linear Regime
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Figure: Maximum growth rate vs.
height above mid-plane. (Wardle,
Salmeron, 2012).
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Hall di↵usion does stabilise
(destabilise) the disk compared to
ohmic di↵usion alone

Up to 2 orders of magnitude
di↵erence in active layer column
density
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Non-Ideal E↵ects and Dust

E↵ect of Hall Di↵usion
probably dwarfed by
uncertainty in dust
fraction

No grains: Coupling
can probably be
maintained at
midplane

1% mass in grains
(early evolution), no
significant active layer

If grains remain small
(turbulence), no
significant active layer
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Figure: Active layer size at 1 AU for positive and
negative magnetic fields and various dust mass fractions
with a = 1µm. (Wardle, Salmeron, 2012)
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Non-Ideal E↵ects: Simulations

No guarantee that linear conditions will guarantee a steady state
of MHD turbulence and outwards transport of angular
momentum

Figure: Radial Velocity and Magnetic Field. (Sano,
Stone, 2002)

Non-linear e↵ects
captured in 2-fluid
simulations

Small initial
perturbations in gas
pressure ⇠ 10�6

Angular Momentum
Transport as in ideal
MHD
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Non-Ideal E↵ects: Simulations

Figure: (Sano, Stone, 2002)

Ohmic di↵usion condition remains
the same

Hall di↵usion marginally changes the
saturation stress

Hall di↵usion has no e↵ect on the
critical Reynolds number

But don’t probe regime of hall
domination XReM > 2 and ReM < 1
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Hydrodynamic Instabilities

Angular Momentum Transport may be achieved with pure
hydrodynamic instabilities:

Convection
Planet-Driven Evolution
Baroclinic Instability

Likely to be subdominant to MHD turbulence

Can be important in dead zones
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Baroclinic Instability

thermalization due 
to diffusion

buoyant
sinking,
roughly
adiabatic

buoyant
rise, 
acceleration

thermalization

vortex

dTpert / dq�= 0

r

entropy
gradient

Radial entropy gradients and e�cient cooling produce vorticity

Particles moving inwards are cooler, drawn to lower orbits

E�cient thermal di↵usion heats them up along Keplerian orbits
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Momentum Transport
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Figure: (Lesur, 2010)

Vorticity if: Convectively unstable
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E�cient cooling

Significant initial perturbation
(Subcritical)

2D simulations show growth of vorticity and weak angular
momentum transport

Not necessarily the same in 3D
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Conclusions

MRI turbulence important in mass accretion for protoplanetary
disks

Leads to layered disk structure, with accretion through a thin
active layer

Still large uncertainties concerning:

Exact Modelling of Disk (MMSN)
Dominant Ionization Sources
Recombination Rate and the large part played by dust grains
Behaviour of Hall Di↵usion in the non-linear regime

Baroclinic Instability possible source of additional accretion in
dead zones
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