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How do we get planetesimals?

Intermediate particles’ orbits decay quickly
Hurdle: 1 cm–1 km (Ebind � Ekinetic)
Solar wind time limit
Growth must proceed quickly
Difficult to accomplish with gravity



Planet Formation Problem Drag Instability Streaming Instability Vortices Simulation Conclusion References

Overview of Drag Instability

Environment
Disk with particles and gas
Settled particles
Drag coupling slows particles coherently

Mechanism
ρ ↑
L ↑
ṙ ↓
ρ ↑
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Application of Drag

Minimal drift, particle-dominated limit
Growth rate ≈ 0.49(Σp/S1)−2/5ν

−1/5
∗

S1 ∼ 0.28 g/cm2

ν∗ ∼ 2.3× 10−5

Exponential growth in inward-drifting frame
Competitive with collisions
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Streaming Instability — Background

Gas dragging particles ⇒ particles affected by gas
Two mixed fluids
No vertical differentiation
No self-gravity
No turbulence
Incompressible gas
Stopping times

τs = ΩK ×


ρsa
ρgcg

, a < 4
9λmfp (Epstein)

ρsa
ρgcg

(
4a

9λmfp

)
, a < 4

9λmfp (Stokes)



Planet Formation Problem Drag Instability Streaming Instability Vortices Simulation Conclusion References

Features of Streaming

6-th order dispersion relation
3 quickly decaying modes
2 epicycles
1 secular mode

Growth rate dependence
ρp/ρg → 0,∞ ↓
ρp/ρg → 1 ↓
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Best growth obtained varying radial wavenumber. (Youdin & Good-
man 2005)
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Growth and wave speed for ρp/ρg = 0.2, τs = 0.01. (Youdin &
Goodman 2005)
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Growth and wave speed for τs = 0.01, Kz = 1. (Youdin & Goodman
2005)
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(Johansen et al. 2007)
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Streaming Summary

Growth faster than diffusion: K . 2π√sηΩα

Maximum growth: (k/2)(Vmax − Vmin)

Typical conditions: ∼ 1018–1020 g
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Formation of Vortices

Need turbulence
Coriolis force at large scales
Instability or mergers
Shear ⇒ anticyclonic
Grow to size of disk thickness and velocity of sound speed
Separated radially
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Particle Capture

Balance of Coriolis,
centrifugal, and friction
forces
Elliptical vortex (aligned
with shear), q = a/b
Light particles:

tcapt =
4ξ

3Ω2
q(q − 1)2

(q − 2)(2q + 1)

Heavy particles:

tcapt =
1
ξ

2q(q − 1)

(q − 3)(2q + 1)

Capture times. (Chavanis 2000)
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Particle Capture

Optimal trapping:

ξopt ≈
(

3(q−2)
2(q−1)(q−3)

)1/2
Ω

topt
capt ≈

(
8(q−1)3q2

3(q−3)(2q+1)2(q−2)

)1/2
1
Ω

Condition for any trapping

q > 3

−5
2Ω < ω < −3

2Ω Capture times. (Chavanis 2000)
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Mass Accumulation

Particles concentrated by turbulence
Particles brought in by shear

Vortex mass

Ṁ =
3
2ΣpΩR2 (f (ξ))2

M → 3
2 (Ωtlife) ΣpR2 (f (ξ))2

Heavy vs. light

f (ξ) ≈


(

Ω
ξ

)1/2
, light

ξ
Ω , heavy
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Application to Solar System

Minimum mass nebula
Stokes vs. Epstein

ξ

Ω
=


1913
a2ρs

r 5/4, r < rc
850
aρs

r−3/2, r > rc

rc =
(4

9
a

1 cm

)4/11
AU a = 30 cm, ρs = 2 g/cm3. (Cha-

vanis 2000)



Planet Formation Problem Drag Instability Streaming Instability Vortices Simulation Conclusion References

Application to Solar System

Transition

1.7 AU < rc < 3.9 AU

Interior optimum near
1 AU

rin =

(
a2ρs

1913

)4/5

Exterior optimum near
6 AU

rout =

(
850
aρs

)2/3

a = 30 cm, ρs = 2 g/cm3. (Cha-
vanis 2000)



Planet Formation Problem Drag Instability Streaming Instability Vortices Simulation Conclusion References

Application to Solar System

Transition

1.7 AU < rc < 3.9 AU

Interior optimum near
1 AU

rin =

(
a2ρs

1913

)4/5

Exterior optimum near
6 AU

rout =

(
850
aρs

)2/3

a = 30 cm, ρs = 2 g/cm3. (Cha-
vanis 2000)



Planet Formation Problem Drag Instability Streaming Instability Vortices Simulation Conclusion References

Application to Solar System

ρs = 2 g/cm3. (Chavanis 2000) a = 30 cm, ρs = 2 g/cm3. (Cha-
vanis 2000)
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Simulation Considerations

Hydrodynamic
Grain sizes
Disk structure
2D vs. 3D
Pure hydro vs. MHD
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Short stopping times. (Bai and Stone 2010)
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Long stopping times. (Bai and Stone 2010)
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Simulation Results

Streaming instability
τs & 10−2

Prevents Kelvin-Helmholtz
Large, abundant particles

Range of particle sizes
Clumping counters radial drift
Reduced collisional velocity

Formation in dead zone
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Radial drift. (Bai and Stone 2010)
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Particle density. (Bai and Stone 2010)
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Conclusion

Need mechanism to grow to km sizes
Drag hurts and helps
Streaming instability critical
Vortical structure may play role
Seen in simulations
Generality?
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