Physics of the Interstellar and Intergalactic Medium

Errata in the fourth and fifth printings.

Updated 2023.05.23

Bruce T. Draine

PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

Which printing of the book you have can be determined from the last line on the copyright page:

First printing: 1 3 5 7 9 10 8 6 4 2 Second printing: 3579108642 Third printing: 357910864 Fourth printing: 57910864 Fifth printing: 5791086 Sixth printing: 791086 Seventh printing: 79108 Eighth printing: 9 10 8

Errata in the fourth and fifth printings.

- Plate 5 caption, typo:
 ...seen in Plate 6. → ...seen in Plate 4.
 noted 2018.04.07 by L. Bouma.
- §3.6, p. 28, Eq. 3.31, typo: factor of 2 error. Eq. (3.31) should read

$$\sigma_{\text{rr},u\ell}(E) = \frac{1}{2} \frac{g(X_{\ell})}{g(X_{u}^{+})} \frac{(I_{X,\ell u} + E)^{2}}{Em_{e}c^{2}} \sigma_{\text{pi},\ell u}(h\nu = I_{X,\ell u} + E) \quad , \quad (3.31)$$

noted 2015.06.01 by E. B. Jenkins

- §3.7, p. 28, Eq. (3.33), typo: sign error. Change $e^{-I_n/kT} \to e^{I_n/kT}$ noted 2017.02.09
- §3.8, p. 31, Eq. (3.48), typo: change

$$I_{n\alpha} \propto A_{n\alpha}h\nu_{n\alpha} \int n[\mathrm{H}(n)]ds \propto n^{-6}b_n \int n_e n(\mathrm{H}^+)ds$$

 $\to I_{n\alpha} \propto A_{n\alpha}h\nu_{n\alpha} \int n[\mathrm{H}(n+1)]ds \propto n^{-6}b_{n+1} \int n_e n(\mathrm{H}^+)ds$

noted 2019.02.06

• §7.5, p. 69, Eq. (7.29), typo: missing a factor n_{ℓ} . Should read

$$\kappa_{\nu} = n_{\ell} \sigma_{\ell \to u} \left(1 - \frac{n_u / g_u}{n_{\ell} / g_{\ell}} \right) < 0$$

noted 2020.10.12 by Yan Liang.

- §9.8, p. 84, typo in line following Eq. (9.35): change $(v_{\rm FWHM}/2\,{\rm km\,s}^{-1})^2/3 \rightarrow (v_{\rm FWHM}/2\,{\rm km\,s}^{-1})^{2/3}$. noted 2020.09.09 by Roohi Dalal.
- §10.2, sentence preceding Eq. (10.5): change
 ...the Gaunt factor from quantum-mechanical calculations is approximately
 ...the Gaunt factor is approximately (Scheuer 1960)
 noted 2018.11.18 by S. Weinberg.

• §10.5, p. 97, Eq. (10.25), typo (missing factor of 2): should read

$$j_{\text{fb},\nu} = \frac{g_{\text{b}}}{g_{\text{e}}g_{i}} \frac{2 h^{4} \nu^{3}}{(2\pi m_{e}kT)^{3/2}c^{2}} e^{(I_{\text{b}} - h\nu)/kT} \sigma_{\text{b,pi}}(\nu) n_{e} n_{i}$$

3

noted 2021.02.14 by Shigenobu Hirose.

• §11.4, p. 110, Eq. (11.34), typo (was off by factor 10⁴): should read

$$= 6.53 \times 10^{-5} \operatorname{arcsec} \left(\frac{D/\operatorname{kpc}}{L/10^{14} \operatorname{cm}} \right)^{1/2} \frac{(\Delta n_e)_{L, \operatorname{rms}}}{10^{-3} \operatorname{cm}^{-3}} \nu_9^{-2}$$

noted 2021.10.25 by I. Wasserman.

- §13.1, pp. 128, eq. (13.1), (13.3), (13.4): for notational consistency with the rest of the chapter, change $\sigma_{\rm pe} \to \sigma_{\rm pi}$ noted 2018.01.07 by L. Bouma.
- §13.1, p. 130, second paragraph, typo: ...to $3\times10^{-10}~\rm s^{-1}$ for Si \rightarrow ...to $3\times10^{-9}~\rm s^{-1}$ for Si noted 2017.03.05
- §14.7.1, p. 156, Eq. (14.21), typo: ${\rm H}(^1{\rm S}_{1/2}) \ \to \ {\rm H}(^2{\rm S}_{1/2})$ noted 2022.07.06 by S. R. Kulkarni.
- §14.9, p. 159, typo: factor of 2 error. Eq. (14.41) should read

$$\sigma_{\rm rr}(E) = \frac{g_{\ell}}{2g_{\nu}} \frac{(I+E)^2}{Em_e c^2} \sigma_{\rm pi}(h\nu = I+E) \ .$$
 (14.41)

noted 2015.06.01 by E. B. Jenkins.

• §14.9, p. 160, typo: factor of 2 error. Eq. (14.43) should read

$$\frac{\langle \sigma v \rangle_{\rm rr}}{\langle \sigma v \rangle_{\rm ci}} \approx 2\pi \alpha^3 \frac{f_{\rm pi}}{C} \frac{I}{kT} e^{I/kT} \quad , \tag{14.43}$$

noted 2015.06.01 by E. B. Jenkins.

• §14.9, p. 160, typo: factor of 2 error. Eq. (14.44) and following should read

$$\frac{I}{kT}e^{I/kT} = \frac{C}{2\pi f_{\rm pi}} \frac{1}{\alpha^3} . {14.44}$$

If $C\approx 1$ and $f_{\rm pi}\approx 1$, this has solution $I/kT\approx 10.6.$... noted 2015.06.01 by E. B. Jenkins.

• §15.5, p. 174, sentence preceding Eq. (15.36), typo: $N({\rm He^+})/N({\rm H^+}) < n_{\rm H}/n_{\rm He} \rightarrow N({\rm He^+})/N({\rm H^+}) < n_{\rm He}/n_{\rm H}$ noted 2020.09.29 by H. Jia

• §16.5, p. 188, Eq. (16.16), typo: should read

$$H_2 + CR \to H_2^+ + e^- + CR$$

noted 2020.09.29 by R. Córdova

- §17.3, p. 195, footnote 3, typos: ...frequency $\sim 8 \times 10^{10} \ Hz... \rightarrow ...$ frequency $\sim 1.1 \times 10^{10} \ Hz... \rightarrow ... \sim 10^2$ precession periods. $\rightarrow ... \sim 18$ precession periods. noted 2020.10.02
- §20.1, p. 229, typo just below Eq. (20.2): replace ...unit time that level x will... \rightarrow ...unit time the level u will... noted 2020.10.12 by Yan Liang
- §22.6, p. 256, footnote 6: the DDSCAT website has moved. Change http://code.google.com/p/ddscat → http://www.ddscat.org noted 2019.03.25
- §23.3.2, p. 268, typo: Si-O-Si bending mode \rightarrow O-Si-O bending mode noted 2020.10.12
- §25.3, p. 299, typo following Eq. (25.11): change ...charge $Z_{\rm gr}=Ua$ can... \rightarrow ...charge $Z_{\rm gr}=Ua/e$ can... noted 2021.06.25 by Yu Fung Wong.
- §27.3.1, p 320, typos in coefficient of $\ln(T_4/Z^2)$ term: Eq. (27.19) and (27.20) should read

$$\gamma_A = -1.2130 - 0.0115 \ln(T_4/Z^2) \tag{27.19}$$

$$\gamma_B = -1.3163 - 0.0208 \ln(T_4/Z^2) \tag{27.20}$$

and (27.22) and (27.23) should read

$$\langle E_{\rm rr} \rangle_A = \left[0.787 - 0.0115 \ln(T_4/Z^2) \right] kT$$
 (27.21)

$$\langle E_{\rm rr} \rangle_B = [0.684 - 0.0208 \ln(T_4/Z^2)] kT$$
 (27.22)

noted 2023.01.29 by S. R. Kulkarni.

- §28.3, p. 328, 4th paragraph, typo: change distance from Θ_1 Ori C to the Orion Bar ionization front: $\sim 7.8 \times 10^{18} \, \mathrm{cm} \rightarrow \sim 7.8 \times 10^{17} \, \mathrm{cm}$ noted 2020.10.26
- §32.9, p. 368, just before eq. (32.11), typo: change $A_V/N_{\rm H}=1.87\times 10^{21}\,{\rm cm}^2~\to~A_V/N_{\rm H}=5.3\times 10^{-22}{\rm mag\,cm}^2.$ noted 2016.03.04 by Ilsang Yoon.
- §32.11, p. 372, prepenultimate paragraph: terminological correction. Change "core" to "clump" (three occurrences).
 noted 2015.04.16

$$-4\pi r^2 \kappa \frac{dT}{dr} \rightarrow 4\pi r^2 \kappa \frac{dT}{dr}$$

noted 2019.04.18 by G. Halevi.

• §36.2.3, p. 400, Eq. (36.10): v_x multiplying B_yB_x should be v_y , and v_x multiplying B_zB_x should be v_z . noted 2015.12.17 by J. Miralda-Escudé. The equation should read

$$\left\{ \left[\frac{\rho v^2}{2} + \frac{\gamma p}{(\gamma - 1)} \right] v_x + \frac{(B_y^2 + B_z^2)}{4\pi} v_x - \frac{(B_x B_y v_y + B_x B_z v_z)}{4\pi} - \kappa \frac{dT}{dx} \right\}_1 = \left\{ \left[\frac{\rho v^2}{2} + \frac{\gamma p}{(\gamma - 1)} \right] v_x + \frac{(B_y^2 + B_z^2)}{4\pi} v_x - \frac{(B_x B_y v_y + B_x B_z v_z)}{4\pi} - \kappa \frac{dT}{dx} \right\}_2 \right\}. (36.10)$$

- §37.1, p. 413, 2nd paragraph: Change
 Cases of astrophysical interest will normally have...
 →
 Many cases of astrophysical interest will have...
 noted 2018.04.09.
- §37.1, p. 413, typo just above Eq. (37.3): $Jh\nu/c = \rho_1 u_1 h\nu/\mu_i c \ll \rho_1 (u_1^2 + c_1^2 + B_1^2/8\pi). \to \\ Jh\nu/c = \rho_1 u_1 h\nu/\mu_i c \ll \rho_1 (u_1^2 + c_1^2) + B_1^2/8\pi.$ noted 2016.12.08 by Ryohei Nakatani.
- §37.1, Eq. (37.8): The correction terms for $u_{\rm R}$, $x_{\rm R}$, $u_{\rm D}$, and $x_{\rm D}$ can be improved by analyzing the full cubic equation (37.3): change

$$\begin{split} u_{\mathrm{R}} &\approx 2c_{2} \quad \rightarrow \quad u_{\mathrm{R}} \approx 2c_{2} \left[1 - \frac{2c_{1}^{2} - 3v_{A1}^{2}}{8c_{2}^{2}} \right] \\ x_{\mathrm{R}} &\approx \frac{1}{2} + \frac{2c_{1}^{2} + v_{A1}^{2}}{16c_{2}^{2}} \quad \rightarrow \quad x_{\mathrm{R}} \approx \frac{1}{2} \\ u_{\mathrm{D}} &\approx \frac{2c_{1}^{2} + v_{A1}^{2}}{4c_{2}} \quad \rightarrow \quad \frac{2c_{1}^{2} + v_{A1}^{2}}{4c_{2}} \left[1 + \frac{2c_{1}^{2} + v_{A1}^{2}}{8c_{2}^{2}} \right] \\ x_{\mathrm{D}} &\approx \frac{4c_{2}^{2}}{2c_{1}^{2} + v_{A1}^{2}} \quad \rightarrow \quad x_{\mathrm{D}} \approx \frac{4c_{2}^{2}}{2c_{1}^{2} + v_{A1}^{2}} \left[1 - \frac{v_{A1}^{2}}{8c_{2}^{2}} \right] \end{split}$$

noted 2018.02.19 by Woong-Tae Kim.

- §37.1 and §37.2, pp. 414-416: the mathematics is correct, but the "weak-type", and "strong-type" terminology was unfortunately inverted: all occurrences of "weak-type" should be changed to "strong-type", and vice-versa:
 - §37.1.1, p. 414, first paragraph:
 ...are called **strong R-type**. Strong R-type solutions...
 →

...are called weak R-type. Weak R-type solutions...

• §37.1.1, p. 414, second paragraph:

...referred to as weak R-type,... \rightarrow ...referred to as strong R-type,...

• §37.1.1, p. 414, second paragraph: Hence, only strong R-type I-fronts are physically relevant.

Hence, only weak R-type I-fronts are physically relevant.

- §37.1.2, p. 414, first paragraph:
 ...is termed **weak D-type**. → ...is termed **strong D-type**.
- §37.1.2, p. 414, second paragraph:
 ...is termed **strong D-type**. → ...is termed **weak D-type**.
- Fig. 37.1 and caption should be:

Figure 37.1 $u_2/u_1=\rho_1/\rho_2$, as a function of the velocity u_1 of the I-front relative to the neutral gas just ahead of the I-front, for D-type and R-type ionization front solutions (see text) for an example with $c_1=1\,\mathrm{km\,s^{-1}}$, $v_{A1}=2\,\mathrm{km\,s^{-1}}$, and $c_2=11.4\,\mathrm{km\,s^{-1}}$. The astrophysically relevant solutions are the strong D-type and weak R-type cases, shown as heavy curves. There are no solutions with u_1 between u_D and u_R .

- §37.1, p. 416, first paragraph: ...will be strong R-type, ... → ...will be weak R-type, ...
- §37.1, p. 417, fourth line:
 ...will now be weak D-type, ... → ...will now be strong D-type, ...
 noted 2016.12.06 by Ryohei Nakatani.

• §37.2, p. 418, typos:

...moving at a speed v_s that will be close to (just slightly larger than) the speed of the I-front:

$$v_s \approx V_i$$
 . (37.21)

7

_

...moving at a speed ${\cal V}_s$ that will be close to (just slightly larger than) the speed of the I-front:

$$V_s \approx V_i$$
 . (37.21)

noted 2016.12.08 by Ryohei Nakatani.

• §38.3, p. 428, last paragraph, typo: $\dot{M}_w \approx 2 \times 10^{-5} \, \mathrm{km \, s^{-1}} \rightarrow \dot{M}_w \approx 2 \times 10^{-5} \, M_{\odot} \, \mathrm{yr^{-1}}$ noted 2015.12.17 by J. Miralda-Escudé.

• §41.3, p. 456, typo: missing factor of G. Eq. (41.36) should read

$$E_{\text{grav}} = -\frac{G}{2} \int dV_1 \int dV_2 \frac{\rho(\mathbf{r}_1)\rho(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$
(41.36)

noted 2015.04.30 by J. Greco.

• Appendix B, p. 476: typo: incorrect units for Stefan-Boltzmann constant σ : $5.67040\times10^{-5}~{\rm erg\,s^{-1}\,cm^{-3}\,K^{-4}} \rightarrow 5.67040\times10^{-5}~{\rm erg\,s^{-1}\,cm^{-2}\,K^{-4}}$ noted 2019.05.14 by Aaron Tran.

• Appendix D, p. 481: corrected typos:

$$\begin{split} \text{F VI} \rightarrow \text{VII:} \quad I &= 147.163 \rightarrow 157.163 \\ \text{Ne VI} \rightarrow \text{VII:} \quad I &= 154.214 \rightarrow 157.934 \\ \text{Ti III} \rightarrow \text{IV:} \quad I &= 24.492 \rightarrow 27.492 \\ \text{Ti V} \rightarrow \text{VI:} \quad I &= 123.7 \rightarrow 99.299 \\ \text{Zn VI} \rightarrow \text{VII:} \quad I &= 133.903 \rightarrow 108.0 \\ \text{noted 2015.07.10 by Guangtun Ben Zhu.} \end{split}$$

• Appendix E, p. 485: diagrams for N IV and O V: the levels shown as ${}^2P_1^o$ and ${}^2P_2^o$ should be ${}^3P_1^o$ and ${}^3P_2^o$, respectively. noted 2023.05.23

• Appendix E, p. 488: inadvertent omisssion of $^2\mathrm{P}^o_{1/2}{\to}^2\mathrm{D}^o_{5/2}$ emission lines

for NI, OII, and Ne IV. Corrected figure:

noted 2023.04.16 by S.R. Kulkarni

• Appendix E, p. 494: inadvertent omission of $^1S_0 {\rightarrow} ^1D_2$ emission lines for

Si I and S III. Corrected figure:

noted 2023.04.16 by S.R. Kulkarni

- Appendix F, Table F.2, p. 497, typo: the first transition listed for S III: change ${}^3P_0-{}^1P_0 \rightarrow {}^3P_0-{}^3P_1$ noted 2016.10.03 by C.D. Kreisch.
- Appendix F, Table F.5, p. 500: Level u in the fourth line in the table should be $^2\mathrm{P}^o_{3/2}$ rather than $^2\mathrm{P}^o_{5/2}$. noted 2022.09.03 by S. R. Kulkarni
- Appendix F, Table F.6, p. 501: The table title should be "Rate Coefficients for ... Deexcitation..." rather than "... Excitation...". noted 2015.07.03
- Appendix F, Table F.6, p. 501: the rates for entries 5 and 6 should be interchanged, so that entries 4-6 read

• Appendix F, Table F.6, p. 501: the rates for entries 23-28 should be changed to

$$H_2(para)$$
 OI ${}^3P_2 - {}^3P_1$ $1.49 \times 10^{-10} T_2^{0.369 - 0.026 \ln T_2}$ h

- Appendix G, p. 503, typo just before Eq. (G.7): change ...solution $x_0=e^{-i\omega t}$ \rightarrow ...solution $x=x_0e^{-i\omega t}$. noted 2019.02.11
- Appendix I, p. 507, typo (15.78 \rightarrow 31.56): Eq. (I.7) should read

$$\frac{Ze^2}{a_0kT} = \frac{31.56Z}{T_4}$$

noted 2019.01.14.

• Appendix J, p. 510, Eq. (J.8): missing sign:

$$Y_3 = E_{\text{grav}} = \frac{1}{2} \int dV_1 \int dV_2 G \, \frac{\rho(\mathbf{r}_1)\rho(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

 \rightarrow

$$Y_3 = E_{
m grav} = -rac{1}{2} \int dV_1 \int dV_2 \, G \, rac{
ho({f r}_1)
ho({f r}_2)}{|{f r}_1 - {f r}_2|}$$

noted 2020.11.13

• Appendix J, p. 510, Eq. (J.13), typo:

$$\Pi_0 \equiv \oint d\mathbf{S} \cdot \mathbf{r} p \quad \rightarrow \quad \Pi_0 \equiv \frac{1}{3} \oint d\mathbf{S} \cdot \mathbf{r} p$$

noted 2017.03.08.